

se

clock

rocess
n in
iring

red,
ued to
Component Operation 16

The embedded Pentium® processor has an optimized superscalar micro-architecture capable of
executing two instructions in a single clock. A 64-bit external bus, separate data and instruction
caches, write buffers, branch prediction, and a pipelined floating-point unit combine to sustain the
high execution rate. These architectural features and their operation are discussed in this chapter.

16.1 Pipeline and Instruction Flow

The integer instructions traverse a five stage pipeline in the embedded Pentium processor (the
embedded Pentium® processor with MMX™ technology has an additional pipeline stage). The
pipeline stages are as follows:

The embedded Pentium processor is a superscalar machine, built around two general purpo
integer pipelines and a pipelined floating-point unit capable of executing two instructions in
parallel. Both pipelines operate in parallel, allowing integer instructions to execute in a single
in each pipeline. Figure 16-1 depicts instruction flow in the embedded Pentium processor.

The pipelines in the embedded Pentium processor are called the “u” and “v” pipes and the p
of issuing two instructions in parallel is termed “pairing.” The u-pipe can execute any instructio
the Intel architecture, whereas the v-pipe can execute “simple” instructions as defined in ““Pa
Two MMX™ Instructions” on page 16-194” section of this chapter. When instructions are pai
the instruction issued to the v-pipe is always the next sequential instruction after the one iss
the u-pipe.

PF Prefetch

F Fetch (embedded Pentium processor with MMX technology only)

D1 Instruction Decode

D2 Address Generate

EX Execute - ALU and Cache Access

WB Writeback
Embedded Pentium® Processor Family Developer’s Manual 16-179

Component Operation

tch
r and
ed in

133, 166

en it is

on
tion is

vents
ution
16.1.1 Integer Pipeline Description

The embedded Pentium processor pipeline has been optimized to achieve higher throughput
compared to previous generations of Intel architecture processors.

The first stage of the pipeline is the Prefetch (PF) stage in which instructions are prefetched from
the on-chip instruction cache or memory. Because the processor has separate caches for
instructions and data, prefetches do not conflict with data references for access to the cache. If the
requested line is not in the code cache, a memory reference is made. In the PF stage, two
independent pairs of line-size (32-byte) prefetch buffers operate in conjunction with the branch
target buffer. This allows one prefetch buffer to prefetch instructions sequentially while the other
prefetches according to the branch target buffer predictions. The prefetch buffers alternate their
prefetch paths. In the embedded Pentium processor with MMX technology, four 16-byte prefetch
buffers operate in conjunction with the BTB to prefetch up to four independent instruction streams.
See the “Instruction Prefetch” on page 16-181 for further details on prefetch buffers.

In the embedded Pentium processor with MMX technology only, the next pipeline stage is Fe
(F), which is used for instruction length decode. It replaces the D1 instruction-length decode
eliminates the need for end-bits to determine instruction length. Also, any prefixes are decod
the F stage. The Fetch stage is not supported by the embedded Pentium processor (at 100,
MHz) or the embedded Pentium processor with VRT.

The embedded Pentium processor with MMX technology also features an instruction FIFO
between the F and D1 stages. This FIFO is transparent; it does not add additional latency wh
empty. During every clock cycle, two instructions can be pushed into the instruction FIFO
(depending on availability of the code bytes, and on other factors such as prefixes). Instructi
pairs are pulled out of the FIFO into the D1 stage. Since the average rate of instruction execu
less than two per clock, the FIFO is normally full. As long as the FIFO is full, it can buffer any
stalls that may occur during instruction fetch and parsing. If such a stall occurs, the FIFO pre
the stall from causing a stall in the execution stage of the pipe. If the FIFO is empty, an exec

Figure 16-1. Embedded Pentium® Processor Pipeline Execution

A6103-01

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

i1 i3 i5 i7
i2 i4 i6 i8

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7

PF

D1

D2

EX

WB

Clk0 Clk1 Clk2 Clk3 Clk4 Clk5 Clk6 Clk7 Clk8

PF

F

D1

D2

EX

WB

NOTE: i1 refers to instruction 1

Pentium® Processor Pentium Processor with MMX™ Technology
16-180 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

O
.e.,

n which
coders
ring
m
e u-

at the
cond
or

 0FH
essor

 are

l D2
 able to

e
nch

ring

 state
anch

itions.
en an
peline
 EX, if

. No

ons in

refetch

dicts
ts
s to
tion
stall may result from the pipeline being “starved” for instructions to execute. Stalls at the FIF
entrance may be caused by long instructions or prefixes, or “extremely misaligned targets” (i
Branch targets that reside at the last bytes of 16-aligned bytes).

The pipeline stage after the PF stage in the embedded Pentium processor is Decode1 (D1), i
two parallel decoders work to decode and issue the next two sequential instructions. The de
determine whether one or two instructions can be issued contingent upon the instruction pai
rules described in “Pairing Two MMX™ Instructions” on page 16-194.” The embedded Pentiu
processor requires an extra D1 clock to decode instruction prefixes. Prefixes are issued to th
pipe at the rate of one per clock without pairing. After all prefixes have been issued, the base
instruction is issued and paired according to the pairing rules. The one exception to this is th
embedded Pentium processor decodes near conditional jumps (long displacement) in the se
opcode map (0FH prefix) in a single clock in either pipeline. The embedded Pentium process
with MMX technology handles 0FH as part of the opcode and not as a prefix. Consequently,
does not take one extra clock to get into the FIFO. Note that in the embedded Pentium proc
with MMX technology, MMX instructions can be paired. This is discussed in “Pairing Two
MMX™ Instructions” on page 16-194.

The D1 stage is followed by Decode2 (D2) in which addresses of memory resident operands
calculated. In the Intel486™ processor, instructions containing both a displacement and an
immediate or instructions containing a base and index addressing mode require an additiona
clock to decode. The embedded Pentium processor removes both of these restrictions and is
issue instructions in these categories in a single clock.

The embedded Pentium processor uses the Execute (EX) stage of the pipeline for both ALU
operations and for data cache access; therefore, those instructions specifying both an ALU
operation and a data cache access require more than one clock in this stage. In EX, all u-pip
instructions and all v-pipe instructions except conditional branches are verified for correct bra
prediction. Microcode is designed to utilize both pipelines; therefore, those instructions requi
microcode execute faster.

The final stage is Writeback (WB), in which instructions are enabled to modify the processor
and complete execution. In this stage, v-pipe conditional branches are verified for correct br
prediction.

During their progression through the pipeline, instructions may be stalled due to certain cond
Both the u-pipe and v-pipe instructions enter and leave the D1 and D2 stages in unison. Wh
instruction in one pipe is stalled, the instruction in the other pipe is also stalled at the same pi
stage. Thus both the u-pipe and the v-pipe instructions enter the EX stage in unison. Once in
the u-pipe instruction is stalled, then the v-pipe instruction (if any) is also stalled. If the v-pipe
instruction is stalled, then the instruction paired with it in the u-pipe is not allowed to advance
successive instructions are allowed to enter the EX stage of either pipeline until the instructi
both pipelines have advanced to WB.

16.1.1.1 Instruction Prefetch

In the embedded Pentium processor PF stage, two independent pairs of line-size (32-byte) p
buffers operate in conjunction with the branch target buffer. Only one prefetch buffer actively
requests prefetches at any given time. Prefetches are requested sequentially until a branch
instruction is fetched. When a branch instruction is fetched, the branch target buffer (BTB) pre
whether the branch will be taken or not. If the branch is predicted not taken, prefetch reques
continue linearly. On a predicted taken branch the other prefetch buffer is enabled and begin
prefetch as though the branch were taken. If a branch is discovered mispredicted, the instruc
pipelines are flushed and prefetching activity starts over.
Embedded Pentium® Processor Family Developer’s Manual 16-181

Component Operation

uffers
the
in the
o-stage

r the
:

The embedded Pentium processor with MMX technology’s prefetch stage has four 16-byte b
that can prefetch up to four independent instruction streams, based on predictions made by
BTB. In this case, the Branch Target Buffer predicts whether the branch will be taken or not
PF stage. The embedded Pentium processor with MMX technology features an enhanced tw
Branch prediction algorithm, compared to the embedded Pentium processor.

For more information on branch prediction, see “Component Introduction” on page 15-175.

16.1.2 Integer Instruction Pairing Rules

The embedded Pentium processor can issue one or two instructions every clock. In order fo
processor to issue two instructions simultaneously, they must satisfy the following conditions

• Both instructions in the pair must be “simple” as defined below.

• There must be no read-after-write or write-after-write register dependencies between the
instructions.

• Neither instruction may contain both a displacement and an immediate.

• Instructions with prefixes can only occur in the u-pipe (except for JCC instructions with a 0FH
prefix on the embedded Pentium processor and instructions with a 0FH, 66H or 67H prefix on
the embedded Pentium processor with MMX technology).

• Instruction prefixes are treated as separate 1-byte instructions (except for all 0FH prefixed
instructions in the embedded Pentium processor with MMX technology).

Simple instructions are entirely hardwired; they do not require any microcode control and, in
general, execute in one clock. The exceptions are the ALU mem,reg and ALU reg,mem
instructions which are three and two clock operations, respectively. Sequencing hardware is used to
allow them to function as simple instructions. The following integer instructions are considered
simple and may be paired:

• mov reg, reg/mem/imm

• mov mem, reg/imm

• alu reg, reg/mem/imm

• alu mem, reg/imm

• inc reg/mem

• dec reg/mem

• push reg/mem

• pop reg

• lea reg,mem

• jmp/call/jcc near

• nop

• test reg, reg/mem

• test acc, imm
16-182 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

ual

xactly

nit”

In addition, conditional and unconditional branches may be paired only if they occur as the second
instruction in the pair. They may not be paired with the next sequential instruction. Also,
SHIFT/ROT by 1 and SHIFT by IMM may pair as the first instruction in a pair.

The register dependencies that prohibit instruction pairing include implicit dependencies via
registers or flags not explicitly encoded in the instruction. For example, an ALU instruction in the
u-pipe (which sets the flags) may not be paired with an ADC or an SBB instruction in the v-pipe.
There are two exceptions to this rule. The first is the commonly occurring sequence of compare and
branch, which may be paired. The second exception is pairs of pushes or pops. Although these
instructions have an implicit dependency on the stack pointer, special hardware is included to allow
these common operations to proceed in parallel.

Although two paired instructions generally may proceed in parallel independently, there is an
exception for paired “read-modify-write” instructions. Read-modify-write instructions are ALU
operations with an operand in memory. When two of these instructions are paired, there is a
sequencing delay of two clocks in addition to the three clocks required to execute the individ
instructions.

Although instructions may execute in parallel, their behavior as seen by the programmer is e
the same as if they were executed sequentially.

Information regarding pairing of FPU and MMX instructions is discussed in “Floating-Point U
on page 16-185 and “Intel MMX™ Technology Unit” on page 16-189 For additional details on
code optimization, refer to Optimizing for Intel’s 32-Bit Processors (order number 241799).

16.2 Branch Prediction

The embedded Pentium processor uses a Branch Target Buffer (BTB) to predict the outcome of
branch instructions, thereby minimizing pipeline stalls due to prefetch delays.

The processor accesses the BTB with the address of the instruction in the D1 stage. It contains a
Branch prediction state machine with four states: (1) strongly not taken, (2) weakly not taken, (3)
weakly taken, and (4) strongly taken. In the event of a correct prediction, a branch executes without
pipeline stalls or flushes. Branches that miss the BTB are assumed to be not taken. Conditional and
unconditional near branches and near calls execute in one clock and may be executed in parallel
with other integer instructions. A mispredicted branch (whether a BTB hit or miss) or a correctly
predicted branch with the wrong target address causes the pipelines to be flushed and the correct
target to be fetched. Incorrectly predicted unconditional branches incur an additional three clock
delay, incorrectly predicted conditional branches in the u-pipe incur an additional three clock delay,
and incorrectly predicted conditional branches in the v-pipe incur an additional four clock delay.

The benefits of branch prediction are illustrated in the following example. Consider the following
loop from a benchmark program for computing prime numbers:

for(k=i+prime;k<=SIZE;k+=prime)

flags[k]=FALSE;
Embedded Pentium® Processor Family Developer’s Manual 16-183

Component Operation

ded

 based

 cycles
d, the
nt

 and
ce due

em

 end of
though
 limit.
ode
 fetch
so the
le

cycles
y

00H.

000H.
A popular compiler generates the following assembly code (prime is allocated to ECX, K is
allocated to EDX, and AL contains the value FALSE):

inner_loop:

mov byte ptr flags[edx],al

add edx,ecx

cmp edx, SIZE

jle inner_loop

Each iteration of this loop executes in six clocks on the Intel486™ processor. On the embed
Pentium processor, the MOV is paired with the ADD; the CMP with the JLE. With branch
prediction, each loop iteration executes in two clocks.

Note: The dynamic branch prediction algorithm speculatively runs code fetch cycles to addresses
corresponding to instructions executed some time in the past. Such code fetch cycles are run
on past execution history, regardless of whether the instructions retrieved are relevant to the
currently executing instruction sequence.

One effect of the branch prediction mechanism is that the processor may run code fetch bus
to retrieve instructions that are never executed. Although the opcodes retrieved are discarde
system must complete the code fetch bus cycle by returning BRDY#. It is particularly importa
that the system return BRDY# for all code fetch cycles, regardless of the address.

It should also be noted that upon entering SMM, the branch target buffer (BTB) is not flushed
thus it is possible to get a speculative prefetch to an address outside of SMRAM address spa
to branch predictions based on code executed prior to entering SMM. If this occurs, the syst
must still return BRDY# for each code fetch cycle.

Furthermore, the processor may run speculative code fetch cycles to addresses beyond the
the current code segment (approximately 100 bytes past end of last executed instruction). Al
the processor may prefetch beyond the CS limit, it will not attempt to execute beyond the CS
Instead, it will raise a GP fault. Thus, segmentation cannot be used to prevent speculative c
fetches to inaccessible areas of memory. On the other hand, the processor never runs code
cycles to inaccessible pages (i.e., not present pages or pages with incorrect access rights),
paging mechanism guards against both the fetch and execution of instructions in inaccessib
pages.

For memory reads and writes, both segmentation and paging prevent the generation of bus
to inaccessible regions of memory. If paging is not used, branch prediction can be disabled b
setting TR12.NBP (bit 0)1 and flushing the BTB by loading CR3 before disabling any areas of
memory. Branch prediction can be re-enabled after re-enabling memory.

The following is an example of a situation that may occur:

1. Code passes control to segment at address C000H.

2. Code transfers control to code at different address (6000H) by using the FAR CALL
instruction.

3. This portion of the code does an I/O write to a port that disables memory at address C0

4. At the end of this segment, an I/O write is performed to re-enable memory at address C

5. Following the OUT instruction, there is a RET instruction to C000H segment.

1. Please refer to Chapter 26 of this volume.
16-184 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

The branch prediction mechanism of the embedded Pentium processor, however, predicts that the
RET instruction is going to transfer control to the segment at address C000H and performs a
prefetch from that address prior to the OUT instruction that re-enables that memory address. The
result is that no BRDY is returned for that prefetch cycle and the system hangs.

In this case, branch prediction should be disabled (by setting TR12.NBP and flushing the BTB by
loading CR3) prior to disabling memory at address C000H, and re-enabled after the RET
instruction by clearing TR12.NBP as indicated above. (See Chapter 26, “Model Specific Registers
and Functions” for more information on register operation.)

In the embedded Pentium processor with MMX technology, the branch prediction algorithm
changes from the embedded Pentium processor in the following ways:

• BTB Lookup is done when the branch is in the PF stage.

• The BTB Lookup tag is the Prefetch address.

• A Lookup in the BTB performs a search spanning sixteen consecutive bytes.

• BTB can contain four branch instructions for each line of 16 bytes.

• BTB is constructed from four independent Banks. Each Bank contains 64 entries and is 4-way
associative.

• Enhanced two-stage branch prediction algorithm.

16.3 Floating-Point Unit

The floating-point unit (FPU) of the embedded Pentium processor is integrated with the integer
unit on the same chip. It is heavily pipelined. The FPU is designed to be able to accept one floating-
point operation every clock. It can receive up to two floating-point instructions every clock, one of
which must be an exchange instruction.

For information on code optimization, please refer to Optimizing for Intel’s 32-Bit Processors
(order number 241799).

Figure 16-2. Branch Prediction Example

A6104-01

OUT ; disable c000H

OUT ; enable c000H
RET

FAR CALL

c000H

6000H
Embedded Pentium® Processor Family Developer’s Manual 16-185

Component Operation

s must
s calls
le

llow fast

e use

ory

P
“FPU

16.3.1 Floating-Point Pipeline Stages

The embedded Pentium processor FPU has eight pipeline stages, the first five of which it shares
with the integer unit. Integer instructions pass through only the first five stages. Integer instructions
use the fifth (X1) stage as a WB (write-back) stage. The eight FP pipeline stages, and the activities
that are performed in them are summarized below:

16.3.2 Instruction Issue

The rules of how floating-point (FP) instructions get issued on the embedded Pentium processor
are described as follows:

1. FP instructions do not get paired with integer instructions. However, a limited pairing of two
FP instructions can be performed.

2. When a pair of FP instructions is issued to the FPU, only the FXCH instruction can be the
second instruction of the pair. The first instruction of the pair must be one of a set F where F =
[FLD single/double, FLD ST(i), all forms of FADD, FSUB, FMUL, FDIV, FCOM, FUCOM,
FTST, FABS, FCHS].

3. FP instructions other than the FXCH instruction and other than instructions belonging to set F
(defined in rule 2) always get issued singly to the FPU.

4. FP instructions that are not directly followed by an FP exchange instruction are issued singly
to the FPU.

The embedded Pentium processor stack architecture instruction set requires that all instructions
have one source operand on the top of the stack. Since most instructions also have their destination
as the top of the stack, most instructions see a “top of stack bottleneck.” New source operand
be brought to the top of the stack before we can issue an arithmetic instruction on them. Thi
for extra usage of the exchange instruction, which allows the programmer to bring an availab
operand to the top of the stack. The processor FPU uses pointers to access its registers to a
execution of exchanges and the execution of exchanges in parallel with other floating-point
instructions. An FP exchange that is paired with other FP instructions takes zero clocks for its
execution. Because such exchanges can be executed in parallel, it is recommended that on
them when necessary to overcome the stack bottleneck.

PF Prefetch

F Fetch (applicable to the embedded Pentium processor with MMX technology only)

D1 Instruction decode

D2 Address generation

EX Memory and register read; conversion of FP data to external memory format and mem
write

X1 Floating-Point Execute stage one; conversion of external memory format to internal F
data format and write operand to FP register file; bypass 1 (bypass 1 is described in
Bypasses” on page 16-188)

X2 Floating-Point Execute stage two

WF Perform rounding and write floating-point result to register file; bypass 2 (bypass 2 is
described in “FPU Bypasses” on page 16-188)

ER Error Reporting/Update Status Word
16-186 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
Note that when exchanges are paired with other floating-point instructions, they should not be
followed immediately by integer instructions. The processor stalls such integer instructions for a
clock if the FP pair is declared safe, or for four clocks if the FP pair is unsafe.

Also note that the FP exchange must always follow another FP instruction to get paired. The
pairing mechanism does not allow the FP exchange to be the first instruction of a pair that is issued
in parallel. If an FP exchange is not paired, it takes one clock for its execution.

16.3.3 Safe Instruction Recognition

The embedded Pentium processor FPU performs Safe Instruction Recognition or SIR in the X1
stage of the pipeline. SIR is an early inspection of operands and opcodes to determine whether the
instruction is guaranteed not to generate an arithmetic overflow, underflow, or unmasked inexact
exception. An instruction is declared safe if it cannot raise any other floating-point exception, and
if it does not need microcode assist for delivery of special results. If an instruction is declared safe,
the next FP instruction is allowed to complete its E stage operation. If an instruction is declared
unsafe, the next FP instruction stalls in the E stage until the current one completes (ER stage) with
no exception. This means a four clock stall, which is incurred even if the numeric instruction that
was declared unsafe does not eventually raise a floating-point exception.

For normal data, the rules used on the embedded Pentium processor for declaring an instruction
safe are as follows.

On the embedded Pentium processor, if FOP = FADD/FSUB/FMUL/FDIV, the instruction is safe
from arithmetic overflow, underflow, and unmasked inexact exceptions if:

1. Both operands have unbiased exponent ≤1FFEH

and

2. Both operands have unbiased exponent ≥−1FFEH

and

3. The inexact exception is masked.

Similarly, on the embedded Pentium processor with MMX technology, if FOP =
FADD/FSUB/FMUL/FDIV, the instruction is safe from arithmetic overflow, underflow, and
unmasked inexact exceptions if:

1. Both operands have unbiased exponent ≤1000H

and

2. Both operands have unbiased exponent ≥−0FFFH

and

3. The inexact exception is masked.

Note that arithmetic overflow of the double precision format occurs when the unbiased exponent of
the result is ≥400H, and underflow occurs when the exponent is ≤−3FFH. Hence, the SIR
algorithm on the embedded Pentium processor allows improved throughput on a much greater
range of numbers than that spanned by the double precision format.
Embedded Pentium® Processor Family Developer’s Manual 16-187

Component Operation

ch”
16.3.4 FPU Bypasses

The following section describes the floating-point register file bypasses that exist on the embedded
Pentium processor. The register file has two write ports and two read ports. The read ports are used
to read data out of the register file in the E stage. One write port is used to write data into the
register file in the X1 stage, and the other in the WF stage. A bypass allows data that is about to be
written into the register file to be available as an operand that is to be read from the register file by
any succeeding floating-point instruction. A bypass is specified by a pair of ports (a write port and
a read port) that get circumvented. Using the bypass, data is made available even before actually
writing it to the register file.

The following procedures are implemented:

1. Bypass the X1 stage register file write port and the E stage register file read port.

2. Bypass the WF stage register file write port and the E stage register file read port.

With bypass 1, the result of a floating-point load (that writes to the register file in the X1 stage) can
bypass the X1 stage write and be sent directly to the operand fetch stage or E stage of the next
instruction.

With bypass 2, the result of any arithmetic operation can bypass the WF stage write to the register
file, and be sent directly to the desired execution unit as an operand for the next instruction.

Note that the FST instruction reads the register file with a different timing requirement, so that for
the FST instruction, which attempts to read an operand in the E stage:

1. There is no bypassing the X1 stage write port and the E stage read port, i.e., no added bypass
for FLD followed by FST. Thus FLD (double) followed by FST (double) takes four clocks
(two for FLD, and two for FST).

2. There is no bypassing the WF stage write port and the E stage read port. The E stage read for
the FST happens only in the clock following the WF write for any preceding arithmetic
operation.

Furthermore, there is no memory bypass for an FST followed by an FLD from the same memory
location.

16.3.5 Branching Upon Numeric Condition Codes

Branching upon numeric condition codes is accomplished by transferring the floating-point SW to
the integer FLAGS register and branching on it. The “test numeric condition codes and bran
construct looks like:

FP instruction1; instruction whose effects on the status word are to be examined;

“numeric_test_and_branch_construct”:

FSTSW AX; move the status word to the ax register.

SAHF; transfer the value in ah to the lower half of the eflags register.

JC xyz; jump upon the condition codes in the eflags register.
16-188 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

This

y, is
ance of
gisters,

ned
,
ive

ng-

nd

tions
Note that all FP instructions update the status word only in the ER stage. Hence there is a built-in
status word interlock between FP instruction1 and the FSTSW AX instruction. The above piece of
code takes nine clocks before execution of code begins at the target of the jump. These nine clocks
are counted as:

Note that if there is a branch mispredict, there is a minimum of three clocks added to the clock
count of nine.

It is recommended that such attempts to branch upon numeric condition codes be preceded by
integer instructions; i.e., you should insert integer instructions in between FP instruction1 and the
FSTSW AX instruction that is the first instruction of the “numeric test and branch” construct.
allows the elimination of up to four clocks (the 4 E-stage stalls on FSTSW AX) from the cost
attributed to this construct, so that numeric branching can be accomplished in five clocks.

16.4 Intel MMX™ Technology Unit

Intel’s MMX technology, supported on the embedded Pentium processor with MMX technolog
a set of extensions to the Intel architecture that are designed to greatly enhance the perform
advanced media and communications applications. These extensions (which include new re
data types, and instructions) are combined with a single-instruction, multiple-data (SIMD)
execution model to accelerate the performance of applications such as motion video, combi
graphics with video, image processing, audio synthesis, speech synthesis and compression
telephony, video conferencing, and 2D and 3D graphics, which typically use compute-intens
algorithms to perform repetitive operations on large arrays of simple, native data elements.

MMX technology defines a simple and flexible software model, with no new mode or operati
system visible state. All existing software runs correctly, without modification, on Intel
architecture processors that incorporate MMX technology, even in the presence of existing a
new applications that incorporate this technology.

The following sections of this chapter describe the basic programming environment for the
technology, the MMX technology register set, data types and instruction set. Detailed descrip
of the MMX instructions are provided in Chapter 3 of the Intel Architecture Software Developer’s
Manual, Volume 2. The manner in which the MMX technology extensions fit into the Intel
architecture system programming model is described in Chapter 10 of the Intel Architecture
Software Developer’s Manual, Volume 3.

16.4.1 MMX™ Technology Programming Environment

MMX technology provides the following new extensions to the Intel architecture programming
environment:

• Eight MMX technology registers (MM0 through MM7)

• Four MMX technology data types (packed bytes, packed words, packed doublewords and
quadword)

• The MMX technology instruction set

FP instruction1: X1, X2, WF, ER (4 E stage stalls for the FSTSWAX);

FSTSW AX: Two E clocks;

SAHF: Two E clocks;

JC xyz: One clock if no mispredict on branch.
Embedded Pentium® Processor Family Developer’s Manual 16-189

Component Operation
16.4.1.1 MMX™ Technology Registers

The MMX technology register set consists of eight 64-bit registers (Figure 16-3). The MMX
instructions access the registers directly using the register names MM0 through MM7. These
registers can only be used to perform calculations on MMX technology data types; they cannot be
used to address memory. Addressing of MMX instruction operands in memory is handled by using
the standard Intel architecture addressing modes and general-purpose registers (EAX, EBX, ECX,
EDX, EBP, ESI, EDI and ESP).

Although the MMX registers are defined in the Intel architecture as separate registers, they are
aliased to the registers in the FPU data register stack (R0 through R7). (See Chapter 10 in the Intel
Architecture Software Developer’s Manual, Volume 3, for a more detailed discussion of MMX
technology register aliasing.)

16.4.1.2 MMX™ Technology Data Types

The MMX technology defines the following new 64-bit data types (Figure 16-4):

The bytes in the packed bytes data type are numbered 0 through 7. Byte 0 is contained in the least
significant bits of the data type (bits 0 through 7) and byte 7 is contained in the most significant bits
(bits 56 through 63). The words in the packed words data type are numbered 0 through 4. Word 0 is
contained in the bits 0 through 15 of the data type and word 4 is contained in bits 48 through 63.
The doublewords in a packed doublewords data type are numbered 0 through 1. Doubleword 0 is
contained in bits 0 through 31 and doubleword 1 is contained in bits 32 through 63.

Figure 16-3. MMX™ Technology Register Set

A6106-01

63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

Packed bytes Eight bytes packed into one 64-bit quantity.

Packed words Four (16-bit) words packed into one 64-bit quantity.

Packed doublewords Two (32-bit) doublewords packed into one 64-bit quantity.

Quadword One 64-bit quantity.
16-190 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
The MMX instructions move the packed data types (packed bytes, packed words or packed
doublewords) and the quadword data type to-and-from memory or to-and-from the Intel
architecture general-purpose registers in 64-bit blocks. However, when performing arithmetic or
logical operations on the packed data types, the MMX instructions operate in parallel on the
individual bytes, words or doublewords contained in a 64-bit MMX register.

When operating on the bytes, words and doublewords within packed data types, the MMX
instructions recognize and operate on both signed and unsigned byte integers, word integers and
doubleword integers.

16.4.1.3 Single Instruction, Multiple Data (SIMD) Execution Model

The MMX technology uses the single instruction, multiple data (SIMD) technique for performing
arithmetic and logical operations on the bytes, words or doublewords packed in an MMX packed
data type. For example, the PADDSB instruction adds eight signed bytes from the source operand
to eight signed bytes in the destination operand and stores eight byte-results in the destination
operand. This SIMD technique speeds up software performance by allowing the same operation to
be carried out on multiple data elements in parallel. The MMX technology supports parallel
operations on byte, word and doubleword data elements when contained in MMX packed data
types.

The SIMD execution model supported in the MMX technology directly addresses the needs of
modern media, communications and graphics applications, which often use sophisticated
algorithms that perform the same operations on a large number of small data types (bytes, words
and doublewords). For example, most audio data is represented in 16-bit (word) quantities. The

Figure 16-4. Packed Data Types

A6107-01

63

Packed bytes (8x8 bits)

56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

63
Packed word (4x16 bits)

48 47 32 31 16 15 0

63

Packed doublewords (2x32 bits)

32 31 0

63

Quadword (64 bits)

0

Embedded Pentium® Processor Family Developer’s Manual 16-191

Component Operation
MMX instructions can operate on four of these words simultaneously with one instruction. Video
and graphics information is commonly represented as palletized 8-bit (byte) quantities. Here, one
MMX instruction can operate on eight of these bytes simultaneously.

16.4.1.4 Memory Data Formats

When stored in memory the bytes, words and doublewords in the packed data types are stored in
consecutive addresses, with the least significant byte, word or doubleword being stored at the
lowest address and the more significant bytes, words or doublewords being stored at consecutively
higher addresses (see Figure 16-5). The ordering of bytes, words or doublewords in memory is
always little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

16.4.1.5 MMX™ Technology Register Data Formats

Values in MMX registers have the same format as a 64-bit quantity in memory. MMX registers
have two data access modes: 64-bit access mode and 32-bit access mode.

The 64-bit access mode is used for 64-bit memory access, 64-bit transfer between registers, all
pack, logical and arithmetic instructions, and some unpack instructions.

The 32-bit access mode is used for 32-bit memory access, 32-bit transfer between integer registers
and MMX technology registers, and some unpack instructions.

16.4.2 MMX™ Instruction Set

The MMX instruction set consists of 57 instructions, grouped into the following categories:

• Data Transfer Instructions

• Arithmetic Instructions

• Comparison Instructions

• Conversion Instructions

• Logical Instructions

• Shift Instructions

• Empty MMX State (EMMS) Instruction

These instructions provide a rich set of operations that can be performed in parallel on the bytes,
words or doublewords of an MMX packed data type.

Figure 16-5. Eight Packed Bytes in Memory (at Address 1000H)

A6108-01

Memory Address 1000HMemory Address 1008H

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
16-192 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

tion,
one
r
When operating on the MMX packed data types, the data within a data type is cast by the type
specified by the instruction. For example, the PADDB (add packed bytes) instruction adds two
groups of eight packed bytes. The PADDW (add packed words) instruction, which adds packed
words, can operate on the same 64 bits as the PADDB instruction treating 64 bits as four 16-bit
words.

16.4.3 Intel MMX™ Technology Pipeline Stages

The MMX technology unit of the embedded Pentium processor with MMX technology has six
pipeline stages. The integration of the MMX technology pipeline with the integer pipeline is very
similar to that of the floating-point pipe.

The embedded Pentium processor with MMX technology adds an additional fetch stage to the
pipeline. The instruction bytes are prefetched from the code cache in the prefetch (PF) stage, and
they are parsed into instructions (and prefixes) in the fetch (F) stage. Additionally, any prefixes are
decoded in the F stage.

When instructions execute in the two pipes, their behavior is exactly the same as if they were
executed sequentially. When a stall occurs, successive instructions are not allowed to pass the
stalled instruction in either pipe. Figure 16-6 shows the pipelining structure for this scheme.

Instruction parsing is decoupled from the instruction decoding by means of an instruction FIFO,
which is situated between the F and D1 (Decode 1) stages. The FIFO has slots for up to four
instructions. This FIFO is transparent, it does not add additional latency when it is empty.

Every clock cycle, two instructions can be pushed into the instruction FIFO (depending on the
availability of the code bytes, and on other factors such as prefixes). Instruction pairs are pulled out
of the FIFO into the D1 stage. Since the average rate of instruction execution is less than two per
clock, the FIFO is normally full. If the FIFO is full, then the FIFO can buffer a stall that may have
occurred during instruction fetch and parsing. If this occurs, then that stall will not cause a stall in
the execution stage of the pipe. If the FIFO is empty, then an execution stall may result from the
pipeline being “starved” for instructions to execute. Also, if the FIFO contains only one instruc
then the instruction will not pair. Additionally, if an instruction is longer than 7 bytes, then only
instruction will be pushed into the FIFO. Figure 16-6 details the MMX pipeline on superscala
processors and the conditions where a stall may occur in the pipeline.

Figure 16-6. MMX™ Technology Pipeline Structure

A6109-01

Decoupled Stages of the MMX™ Instruction Pipeline

PF F D1 D2 EX

EX EX2

EX2 EX3EX1

WB

Integer pipeline only

MMX instruction pipeline
integrated in integer pipeline

Mex WMulWM/M2 M3
Embedded Pentium® Processor Family Developer’s Manual 16-193

Component Operation
16.4.4 Instruction Issue

The rules of how MMX instructions get issued on the embedded Pentium processor with MMX
technology are summarized as follows:

• Pairing of two MMX instructions can be performed.

• Pairing of one MMX instruction with an integer instruction can be performed.

• MMX instructions do not get paired with floating-point instructions.

16.4.4.1 Pairing Two MMX™ Instructions

The rules of how two MMX instructions can be paired are listed below:

• Two MMX instructions that both use the MMX shifter unit (pack, unpack and shift
instructions) cannot pair since there is only one MMX shifter unit. Shift operations may be
issued in either the u-pipe or the v-pipe but not in both in the same clock cycle.

• Two MMX instructions that both use the MMX multiplier unit (PMULL, PMULH, PMADD
type instructions) cannot pair since there is only one MMX multiplier unit. Multiply
operations may be issued in either the u-pipe or the v-pipe but not in both in the same clock
cycle.

• MMX instructions that access either memory or the integer register file can be issued in the u-
pipe only. Do not schedule these instructions to the v-pipe as they will wait and be issued in
the next pair of instructions (and to the u-pipe).

• The MMX destination register of the u-pipe instruction should not match the source or
destination register of the v-pipe instruction (dependency check).

• The EMMS instruction is not pairable.

• If either the CR0.TS or the CR0.EM bits are set, MMX instructions cannot go into the v-pipe.

Table 16-1. Pipeline Stage Summary

Pipeline Stage Abbreviation Description

Prefetch PF Prefetches instructions

Fetch F

The prefetched instruction bytes are passed into instructions. The
prefixes are decoded and up to two instructions are pushed into the
FIFO. Two MMX instructions can be pushed if each of the instructions
are less than seven in bytes length.

Decode1 D1 Integer, floating-point and MMX instructions are decoded in the D1
pipe stage.

Decode2 D2 Source values are read.

Execution E The instruction is committed for execution.

MMX Execution Mex
Execution clock for MMX instructions. ALU, shift, pack, and unpack
instructions are executed and completed in this clock. First clock of
multiply instructions. No stall conditions.

Write/Multiply2 WM/M2
Single clock operations are written. Second stage of multiplier pipe. No
stall conditions.

Multiply3 M3 Third stage of multiplier pipe. No stall conditions.

Write of multiply Wmul Write of multiplier result. No stall conditions.
16-194 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
16.4.4.2 Pairing an Integer Instruction in the U-pipe with an MMX
Instruction in the V-pipe

The rules of how an integer instruction in the u-pipe is paired with an MMX instruction in the
v-pipe are listed below:

• The MMX instruction cannot be the first MMX instruction following a floating-point
instruction.

• The v-pipe MMX instruction does not access either memory or the integer register file.

• The u-pipe integer instruction is a pairable u-pipe integer instruction.

16.4.4.3 Pairing an MMX Instruction in the U-pipe with an
Integer Instruction in the V-pipe

The rules of how an MMX instruction in the u-pipe is paired with an integer instruction in the
v-pipe are listed below:

• The v-pipe instruction is a pairable integer v-pipe instruction.

• The u-pipe MMX instruction does not access either memory or the integer register file.

16.5 On-Chip Caches

The embedded Pentium processor (at 100/133/166 MHz) implements two internal caches for a
total integrated cache size of 16 Kbytes: an 8-Kbyte data cache and a separate 8-Kbyte code cache.
These caches are transparent to application software to maintain compatibility with previous Intel
architecture generations. The embedded Pentium processor with MMX technology doubles the
internal cache size to 32 Kbytes: a 16-Kbyte data cache and a separate 16-Kbyte code cache.

The data cache fully supports the MESI (modified/exclusive/shared/invalid) cache consistency
protocol. The code cache is inherently write protected to prevent code from being inadvertently
corrupted, and as a consequence supports a subset of the MESI protocol, the S (shared) and I
(invalid) states.

The caches have been designed for maximum flexibility and performance. The data cache is
configurable as writeback or writethrough on a line-by-line basis. Memory areas can be defined as
non-cacheable by software and external hardware. Cache writeback and invalidations can be
initiated by hardware or software. Protocols for cache consistency and line replacement are
implemented in hardware, easing system design.

16.5.1 Cache Organization

On the embedded Pentium processor, each cache is 8 Kbytes and is organized as a 2-way set
associative cache. There are 128 sets in each cache; each set contains 2 lines (each line has its own
tag address). Each cache line is 32 bytes wide. The embedded Pentium processor with MMX
technology has two 16-Kbyte, 4-way set-associative caches the with a line length of 32 bytes.

On the embedded Pentium processor, replacement in both the data and instruction caches is
handled by the LRU mechanism, which requires one bit per set in each of the caches. The
embedded Pentium processor with MMX technology uses a pseudo-LRU replacement algorithm
that requires three bits per set in each of the caches. When a line must be replaced, the cache selects
Embedded Pentium® Processor Family Developer’s Manual 16-195

Component Operation
which of L0:L1 and L2:L3 was least recently used. Then the cache determines which of the two
lines was least recently used and marks it for replacement. This decision tree is shown in
Figure 16-7.

The data cache consists of eight banks interleaved on 4-byte boundaries. The data cache can be
accessed simultaneously from both pipes, as long as the references are to different cache banks. A
conceptual diagram of the organization of the data and code caches is shown in Figure 16-8. The
data cache supports the MESI writeback cache consistency protocol, which requires two state bits,
while the code cache supports the S and I state only and therefore requires only one state bit.

Figure 16-7. Pseudo-LRU Cache Replacement Strategy

A6111-01

No

No NoYesYes

Yes

Replace non-valid line

No: L2 or L3 least
recently used

B0 = 0?

B1 = 0? B2 = 0?

Replace
L3

Replace
L2

Replace
L1

Replace
L0

All four lines
in the set valid?

Yes: L0 or L1 least
recently used

Figure 16-8. Conceptual Organization of Code and Data Caches

A6112-01

Data
Cache

Code
Cache

Set

WAY 0

MESI
State

LRU
Tag Address

WAY 1

MESI
State

Tag Address

 WAY 2

MESI
State

Tag Address

 WAY 3

MESI
State

Tag Address

Set

WAY 0

State Bit
(S or I)

State Bit
(S or I)

State Bit
(S or I)

State Bit
(S or I)

LRU
Tag Address

WAY 1

Tag Address

 WAY 2

Tag Address

 WAY 3

Tag Address

Pentium ® Processor with MMX™ Technology

Data
Cache

Code
Cache

Set

WAY 0

MESI
State

LRU
Tag Address

WAY 1

MESI
State

Tag Address

Set

WAY 0

State Bit
(S or I)

State Bit
(S or I)

LRU
Tag Address

WAY 1

Tag Address

Pentium Processor (at 100, 133, 166 MHz)
16-196 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

as CD

ps are
,
n
16.5.2 Cache Structure

The instruction and data caches can be accessed simultaneously. The instruction cache can provide
up to 32 bytes of raw opcodes and the data cache can provide data for two data references all in the
same clock. This capability is implemented partially through the tag structure. The tags in the data
cache are triple-ported. One of the ports is dedicated to snooping while the other two are used to
lookup two independent addresses corresponding to data references from each of the pipelines. The
instruction cache tags of the embedded Pentium processor (at 100/133/166 MHz) are also triple-
ported. Again, one port is dedicated to support snooping and the other two ports facilitate split line
accesses (simultaneously accessing upper half of one line and lower half of the next line). Note that
the embedded Pentium processor with MMX technology does not support split line accesses to the
code cache; its code cache tags are dual ported.

The storage array in the data cache is single ported but interleaved on 4-byte boundaries to be able
to provide data for two simultaneous accesses to the same cache line.

Each of the caches are parity protected. In the instruction cache, there are parity bits on a quarter
line basis and there is one parity bit for each tag. The data cache contains one parity bit for each tag
and a parity bit per byte of data.

Each of the caches are accessed with physical addresses and each cache has its own TLB
(translation lookaside buffer) to translate linear addresses to physical addresses. The TLBs
associated with the instruction cache are single-ported whereas the data cache TLBs are fully dual-
ported to be able to translate two independent linear addresses for two data references
simultaneously. The tag and data arrays of the TLBs are parity protected with a parity bit associated
with each of the tag and data entries in the TLBs.

The data cache of the embedded Pentium processor has a 4-way set associative, 64-entry TLB for
4-Kbyte pages and a separate 4-way set associative, 8-entry TLB to support 4-Mbyte pages. The
code cache has one 4-way set associative, 32-entry TLB for 4-Kbyte pages and 4-Mbyte pages,
which are cached in 4-Kbyte increments. Replacement in the TLBs is handled by a pseudo-LRU
mechanism (similar to the Intel486 processor) that requires 3 bits per set. The embedded Pentium
processor with MMX technology has a 64-entry fully associative data TLB and a 32-entry fully
associative code TLB. Both TLBs can support 4-Kbyte pages as well as 4-Mbyte pages.

16.5.3 Cache Operating Modes

The operating modes of the caches are controlled by the CD (cache disable) and NW (not
writethrough) bits in CR0. See Table 16-2 for a description of the modes. For normal operation and
highest performance, these bits should both be cleared to “0.” The bits come out of RESET
= NW = 1.

When the L1 cache is disabled (CR0.NW and CR0.CD bits are both set to ‘1’) external snoo
accepted in a DP system and inhibited in a UP system. Note that when snoops are inhibited
address parity is not checked, and APCHK# will not be asserted for a corrupt address. Whe
snoops are accepted, address parity is checked (and APCHK# will be asserted for corrupt
addresses).
Embedded Pentium® Processor Family Developer’s Manual 16-197

Component Operation
To completely disable the cache, the following two steps must be performed:

1. CD and NW must be set to 1.

2. The caches must be flushed.

If the cache is not flushed, cache hits on reads will still occur and data will be read from the cache.
In addition, the cache must be flushed after being disabled to prevent any inconsistencies with
memory.

Table 16-2. Cache Operating Modes

CD NW Description

1 1

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache, but do not access memory.

Write hits cause Exclusive State lines to change to Modified State.

Shared lines remain in the Shared state after write hits.

Write misses access memory.

Inquire and invalidation cycles do not affect the cache state or
contents.

This is the state after reset.

1 0

Read hits access the cache.

Read misses do not cause linefills.

Write hits update the cache.

Writes to Shared lines and write misses update external memory.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.

0 1 GP(0)

0 0

Read hits access the cache.

Read misses may cause linefills.

These lines will enter the Exclusive or Shared state under the control
of the WB/WT# pin.

Write hits update the cache.

Only writes to shared lines and write misses appear externally.

Writes to Shared lines can be changed to the Exclusive State under
the control of the WB/WT# pin.

Inquire cycles (and invalidations) are allowed.
16-198 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
16.5.4 Page Cacheability

Two bits for cache control, PWT and PCD are defined in the page table and page directory entries.
The state of these bits are driven out on the PWT and PCD pins during memory access cycles. The
PWT bit controls write policy for the second-level caches used with the embedded Pentium
processor. Setting PWT to 1 defines a writethrough policy for the current page, while clearing
PWT to 0 defines a writeback policy for the current page.

The PCD bit controls cacheability on a page-by-page basis. The PCD bit is internally ANDed with
the KEN# signal to control cacheability on a cycle-by-cycle basis. PCD = 0 enables cacheing,
while PCD = 1 disables it. Cache linefills are enabled when PCD = 0 and KEN# = 0.

16.5.4.1 PCD and PWT Generation

The value driven on PCD is a function of the PWT bits in CR3, the page directory pointer, the page
directory entry and the page table entry, and the CD and PG bits in CR0.

The value driven on PWT is a function of the PCD bits in CR3, the page directory pointer, the page
directory entry and the page table entry, and the PG bit in CR0 (CR0.CD does not affect PWT).

CR0.CD = 1

If cacheing is disabled, the PCD pin is always driven high. CR0.CD does not affect the PWT pin.

CR0.PG = 0

If paging is disabled, the PWT pin is forced low and the PCD pin reflects the CR0.CD. The PCD
and PWT bits in CR3 are assumed 0 during the caching process.

CR0.CD = 0, PG = 1, normal operation

The PCD and PWT bits from the last entry (can be either PDE or PTE, depends on 4 Mbyte or 4
Kbyte mode) are cached in the TLB and are driven anytime the page mapped by the TLB entry is
referenced.

CR0.CD = 0, PG = 1, during TLB Refresh

During TLB refresh cycles when the PDE and PTE entries are read, the PWT and PCD bits are
obtained as shown in Table 16-3 and Table 16-4.

Table 16-3. 32-Bits/4-Kbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE PTE

PTE All other paged mem references
Embedded Pentium® Processor Family Developer’s Manual 16-199

Component Operation
Figure 16-9 shows how PCD and PWT are generated.

Table 16-4. 32-Bits/4-Mbyte Pages

PCD/PWT Taken From During Accesses To

CR3 PDE

PDE All other paged mem references

Figure 16-9. PCD and PWT Generation

A6070-01

Table
(optional) OffsetDirectory

Linear Address
31 22 12 0

PCD, PWT

Page Table

10 031

PCD, PWT

CR3

031

+

+

10

031

Page Directory

PG (Paging Enable)

CD (Cache Disable)

PWT

PCD

Cache transition to
E-state enable

PCD

WB/WT#

CACHE#

KEN#
Cache line fill enable

Cache Inhibit
TR12.3

CIUnlocked Memory Reads

Writeback Cycle

PCD

PWT
PCD, PWT

CR0
16-200 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

auses
aches
 and

D
aches
cial

ot
te to
 INVD

t.

tes are
d

ities and
a Cache
 in
e), S
nition
16.5.5 Inquire Cycles

Inquire cycles are initiated by the system to determine if a line is present in the code or data cache,
and what state the line is in. This manual refers to inquire cycles and snoop cycles interchangeably.

Inquire cycles are driven to the processor when a bus master other than the processor initiates a
read or write bus cycle. Inquire cycles are driven to the processor when the bus master initiates a
read to determine if the processor data cache contains the latest information. If the snooped line is
in the processor data cache in the modified state, the processor has the most recent information and
must schedule a writeback of the data. Inquire cycles are driven to the processor when the other bus
master initiates a write to determine if the processor code or data cache contains the snooped line
and to invalidate the line if it is present. Inquire cycles are described in detail in Chapter 19, “Bus
Functional Description.”

16.5.6 Cache Flushing

The on-chip cache can be flushed by external hardware or by software instructions.

Flushing the cache through hardware is accomplished by driving the FLUSH# pin low. This c
the cache to write back all modified lines in the data cache and mark the state bits for both c
invalid. The Flush Acknowledge special cycle is driven by the processor when all writebacks
invalidations are complete.

The INVD and WBINVD instructions cause the on-chip caches to be invalidated also. WBINV
causes the modified lines in the internal data cache to be written back, and all lines in both c
to be marked invalid. After execution of the WBINVD instruction, the Writeback and Flush spe
cycles are driven to indicate to any external cache that it should write back and invalidate its
contents.

INVD causes all lines in both caches to be invalidated. Modified lines in the data cache are n
written back. The Flush special cycle is driven after the INVD instruction is executed to indica
any external cache that it should invalidate its contents. Care should be taken when using the
instruction that cache consistency problems are not created.

Note that the implementation of the INVD and WBINVD instructions are processor dependen
Future processor generations may implement these instructions differently.

16.5.7 Data Cache Consistency Protocol (MESI Protocol)

The embedded Pentium processor Cache Consistency Protocol is a set of rules by which sta
assigned to cached entries (lines). The rules apply for memory read/write cycles only. I/O an
special cycles are not run through the data cache.

Every line in the data cache is assigned a state dependent on both processor generated activ
activities generated by other bus masters (snooping). The embedded Pentium processor Dat
Protocol consists of four states that define whether a line is valid (HIT/MISS), if it is available
other caches, and if it has been MODIFIED. The four states are the M (Modified), E (Exclusiv
(Shared) and the I (Invalid) states and the protocol is referred to as the MESI protocol. A defi
of the states is given below:
Embedded Pentium® Processor Family Developer’s Manual 16-201

Component Operation
16.5.7.1 State Transition Tables

Lines cached in the processor can change state because of processor-generated activity or as a
result of activity on the processor bus generated by other bus masters (snooping). State transitions
happen because of processor-generated transactions (memory reads/writes) and by a set of external
input signals and internally generated variables. The processor also drives certain pins as a
consequence of the Cache Consistency Protocol.

16.5.7.2 Read Cycle

Table 16-5 shows the state transitions for lines in the data cache during unlocked read cycles.
.

M - Modified: An M-state line is available in only one cache and it is also MODIFIED
(different from main memory). An M-state line can be accessed (read/written to)
without sending a cycle out on the bus.

E - Exclusive: An E-state line is also available in only one cache in the system, but the line is
not MODIFIED (i.e., it is the same as main memory). An E-state line can be
accessed (read/written to) without generating a bus cycle. A write to an E-state
line causes the line to become MODIFIED.

S - Shared: This state indicates that the line is potentially shared with other caches (i.e., the
same line may exist in more than one cache). A read to an S-state line does not
generate bus activity, but a write to a SHARED line generates a write-through
cycle on the bus. The write-through cycle may invalidate this line in other
caches. A write to an S-state line updates the cache.

I - Invalid: This state indicates that the line is not available in the cache. A read to this line
will be a MISS and may cause the processor to execute a LINE FILL (fetch the
whole line into the cache from main memory). A write to an INVALID line
causes the processor to execute a write-through cycle on the bus.

Table 16-5. Data Cache State Transitions for UNLOCKED Processor Initiated Read Cycles†

Present
State Pin Activity Next

State Description

M n/a M Read hit; data is provided to processor core by
cache. No bus cycle is generated.

E n/a E Read hit; data is provided to processor core by
cache. No bus cycle is generated.

S n/a S Read hit; data is provided to the processor by the
cache. No bus cycle is generated.

I

CACHE# low AND
KEN# low AND

WB/WT# high AND
PWT low

E

Data item does not exist in cache (MISS). A bus
cycle (read) will be generated. This state transition
will happen if WB/WT# is sampled high with first
BRDY# or NA#.

I
CACHE# low AND

KEN# low AND
(WB/WT# low OR PWT high)

S Same as previous read miss case except that
WB/WT# is sampled low with first BRDY# or NA#.

I CACHE# high OR KEN# high I KEN# pin inactive; the line is not intended to be
cached in the embedded Pentium processor.

† Locked accesses to the data cache cause the accessed line to transition to the Invalid state.
16-202 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
Note the transition from I to E or S states (based on WB/WT#) happens only if KEN# is sampled
low with the first of BRDY# or NA#, and the cycle is transformed into a LINE FILL cycle. If
KEN# is sampled high, the line is not cached and remains in the I state.

16.5.7.3 Write Cycle

The state transitions of data cache lines during processor-generated write cycles are illustrated in
Table 16-6. Writes to SHARED lines in the data cache are always sent out on the bus along with
updating the cache with the write item. The status of the PWT and WB/WT# pins during these
write cycles on the bus determines the state transitions in the data cache during writes to S-state
lines.

A write to a SHARED line in the data cache generates a write cycle on the processor bus to update
memory and/or invalidate the contents of other caches. If the PWT pin is driven high when the
write cycle is run on the bus, the line is be updated and will stay in the S-state regardless of the
status of the WB/WT# pin that is sampled with the first BRDY# or NA#. If PWT is driven low, the
status of the WB/WT# pin sampled along with the first BRDY# or NA# for the write cycle
determines which state (E:S) the line transitions to.

The state transition from S to E is the only transition in which the data and the status bits are not
updated at the same time. The data is updated when the write is written to the processor write
buffers. The state transition does not occur until the write has completed on the bus (BRDY# has
been returned). Writes to the line after the transition to the E-state do not generate bus cycles.
However, it is possible that writes to the same line that were buffered or in the pipeline before the
transition to the E-state generate bus cycles after the transition to E-state.

An inactive EWBE# input stalls subsequent writes to an E- or an M-state line. All subsequent
writes to E- or M-state lines are held off until EWBE# is returned active.

Table 16-6. Data Cache State Transitions for Processor Initiated Write Cycles

Present
State Pin Activity Next

State Description

M n/a M Write hit; update data cache. No bus cycle generated to
update memory.

E n/a M Write hit; update cache only. No bus cycle generated; line is
now MODIFIED.

S PWT low AND
WB/WT# high E

Write hit; data cache updated with write data item. A write-
through cycle is generated on bus to update memory and/or
invalidate contents of other caches. The state transition
occurs after the writethrough cycle completes on the bus
(with the last BRDY#).

S PWT low AND
WB/WT# low S Same as above case of write to S-state line except that

WB/WT# is sampled low.

S PWT high S
Same as above cases of writes to S state lines except that
this is a write hit to a line in a writethrough page; status of
WB/WT# pin is ignored.

I n/a I Write MISS; a writethrough cycle is generated on the bus to
update external memory. No allocation done.

NOTE: Memory writes are buffered while I/O writes are not. There is no guarantee of synchronization between
completion of memory writes on the bus and instruction execution after the write. A serializing
instruction needs to be executed to synchronize writes with the next instruction if necessary.
Embedded Pentium® Processor Family Developer’s Manual 16-203

Component Operation

ed by
ncing
s it is
16.5.7.4 Inquire Cycles (Snooping)

The purpose of inquire cycles is to check whether the address being presented is contained within
the caches in the embedded Pentium processor. Inquire cycles may be initiated with or without an
INVALIDATION request (INV = 1 or 0). An inquire cycle is run through the data and code caches
through a dedicated snoop port to determine if the address is in one of the processor caches. If the
address is in a processor cache, the HIT# pin is asserted. If the address hits a modified line in the
data cache, the HITM# pin is also asserted and the modified line is then written back onto the bus.

The state transition tables for inquire cycles are given below:

16.5.7.5 Code Cache Consistency Protocol

The processor code cache follows a subset of the MESI protocol. Accesses to the code cache are
either a Hit (Shared) or a Miss (Invalid).

In the case of a read hit, the cycle is serviced internally to the processor and no bus activity is
generated. In the case of a read miss, the read is sent to the external bus and may be converted to a
linefill.

Lines are never overwritten in the code cache. Writes generated by the processor are snooped by
the code cache. If the snoop is a hit in the code cache, the line is invalidated. If there is a miss, the
code cache is not affected.

16.6 Write Buffers and Memory Ordering

The embedded Pentium processor has two write buffers, one corresponding to each of the
pipelines, to enhance the performance of consecutive writes to memory. These write buffers are
one quadword wide (64-bits) and can be filled simultaneously in one clock e.g., by two
simultaneous write misses in the two instruction pipelines. Writes in these buffers are driven out on
the external bus in the order they were generated by the processor core. No reads (as a result of
cache miss) are reordered around previously generated writes sitting in the write buffers. The
implication of this is that the write buffers will be flushed or emptied before a subsequent bus cycle
is run on the external bus (unless BOFF# is asserted and a writeback cycle becomes pending, see
“Linefill and Writeback Buffers” on page 16-207).

The embedded Pentium processor with MMX technology has four write buffers that can be us
either the u-pipe or v-pipe. Posting writes to these buffers enables the pipe to continue adva
when consecutive writes to memory occur. The writes will be executed on the bus as soon a
free, in FIFO order. Reads cannot bypass writes posted in these buffers.

Table 16-7. Cache State Transitions During Inquiry Cycles

Present
State

Next
State

 INV=1

Next
State
INV=0

Description

M I S
Snoop hit to a MODIFIED line indicated by HIT# and HITM# pins
low. embedded Pentium® processor schedules the writing back of
the modified line to memory.

E I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

S I S Snoop hit indicated by HIT# pin low; no bus cycle generated.

I I I Address not in cache; HIT# pin high.
16-204 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

write

Y# is
ted.

ed
efore
The embedded Pentium processor supports strong write ordering only. That is, writes generated by
the embedded Pentium processor are driven to the bus or updated in the cache in the order in which
they occur. The embedded Pentium processor does not write to E or M-state lines in the data cache
if there is a write in either write buffer, if a write cycle is running on the bus, or if EWBE# is
inactive.

Note that only memory writes are buffered and I/O writes are not. There is no guarantee of
synchronization between completion of memory writes on the bus and instruction execution after
the write. The OUT instruction or a serializing instruction needs to be executed to synchronize
writes with the next instruction. Refer to “Serializing Operations” on page 16-206 for more
information.

No re-ordering of read cycles occurs on the embedded Pentium processor. Specifically, the
buffers are flushed before the IN instruction is executed.

16.6.1 External Event Synchronization

When the system changes the value of NMI, INTR, FLUSH#, SMI# or INIT as the result of
executing an OUT instruction, these inputs must be at a valid state three clocks before BRD
returned to ensure that the new value will be recognized before the next instruction is execu

Note that if an OUT instruction is used to modify A20M#, this will not affect previously prefetch
instructions. A serializing instruction must be executed to guarantee recognition of A20M# b
a specific instruction.

Figure 16-10. Embedded Pentium® Processor Write Buffer Implementation

A6113-01

D1

FPF

D2 EX WB

D1 D2 EX WB

4 Buffers
Write

WriteV-pipe

U-pipe

External Bus

Pentium ® Processor with MMX™ Technology

D1

PF

D2 EX WB

D1 D2 EX WB

Write

WriteV-pipe

U-pipe

External Bus

External Bus

Pentium Processor (100/133/166 MHz)

1 Buffer

1 Buffer
Embedded Pentium® Processor Family Developer’s Manual 16-205

Component Operation

ors
OV to
y

, the
3.

ping

tion is
uction

ese

/O

ng
lete

t stop
that
d and
unlike
nding
16.6.2 Serializing Operations

After executing certain instructions, the embedded Pentium processor serializes instruction
execution. This means that any modifications to flags, registers, and memory for previous
instructions are completed before the next instruction is fetched and executed. The prefetch queue
is flushed as a result of serializing operations.

The embedded Pentium processor serializes instruction execution after executing one of the
following instructions: MOV to Debug Register, MOV to Control Register, INVD, INVLPG,
IRET, IRETD, LGDT, LLDT, LIDT, LTR, WBINVD, CPUID, RSM and WRMSR.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.

When the processor serializes instruction execution, it ensures that it has completed any
modifications to memory, including flushing any internally buffered stores; it then waits for the
EWBE# pin to go active before fetching and executing the next instruction. Systems may use the
EWBE# pin to indicate that a store is pending externally. In this manner, a system designer may
ensure that all externally pending stores complete before the processor begins to fetch and execute
the next instruction.

The processor does not generally writeback the contents of modified data in its data cache to
external memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction.

Whenever an instruction is executed to enable/disable paging (that is, change the PG bit of CR0),
this instruction must be followed with a jump. The instruction at the target of the branch is fetched
with the new value of PG (i.e., paging enabled/disabled); however, the jump instruction itself is
fetched with the previous value of PG. Intel386™, Intel486 and embedded Pentium process
have slightly different requirements to enable and disable paging. In all other respects, an M
CR0 that changes PG is serializing. Any MOV to CR0 that does not change PG is completel
serializing.

Whenever an instruction is executed to change the contents of CR3 while paging is enabled
next instruction is fetched using the translation tables that correspond to the new value of CR
Therefore the next instruction and the sequentially following instructions should have a map
based upon the new value of CR3.

The embedded Pentium processor implements branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch instruc
executed. Consequently, instruction execution is not generally serialized when a branch instr
is executed.

Although the I/O instructions are not “serializing” because the processor does not wait for th
instructions to complete before it prefetches the next instruction, they do have the following
properties that cause them to function in a manner that is identical to previous generations. I
reads are not re-ordered within the processor; they wait for all internally pending stores to
complete. Note that the embedded Pentium processor does not sample the EWBE# pin duri
reads. If necessary, external hardware must ensure that externally pending stores are comp
before returning BRDY#. This is the same requirement that exists on Intel386 and Intel486
processor systems. The OUT and OUTS instructions are also not “serializing,” as they do no
the prefetcher. They do, however, ensure that all internally buffered stores have completed,
EWBE# has been sampled active indicating that all externally pending stores have complete
that the I/O write has completed before they begin to execute the next instruction. Note that
the Intel486 processor, it is not necessary for external hardware to ensure that externally pe
stores are complete before returning BRDY#.
16-206 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

y:

If
n out
 in

d one
efill, it

ses that
efore

 in the
ed

R/S#,
on
n
ny
e and
On the embedded Pentium processor with MMX technology, serializing instructions require an
additional clock to complete compared to the embedded Pentium processor due to the additional
pipeline stage.

16.6.3 Linefill and Writeback Buffers

In addition to the write buffers corresponding to each of the internal pipelines, the embedded
Pentium processor has three writeback buffers. Each of the writeback buffers are 1 deep and 32-
bytes (1 line) wide.

A dedicated replacement writeback buffer stores writebacks caused by linefills that replace
modified lines in the data cache. In addition, an external snoop writeback buffer stores writebacks
caused by a inquire cycles that hit modified lines in the data cache. Finally, an internal snoop
writeback buffer stores writebacks caused by internal snoop cycles that hit modified lines in the
data cache. Internal and external snoops are discussed in detail in “Cache Consistency Cycles
(Inquire Cycles)” on page 19-353. Write cycles are driven to the bus with the following priorit

1. Contents of external snoop writeback buffer

2. Contents of internal snoop writeback buffer

3. Contents of replacement writeback buffer

4. Contents of write buffers.

Note that the contents of the write buffer that was written into first are driven to the bus first.
both write buffers were written to in the same clock, the contents of the u-pipe buffer is writte
first. In the embedded Pentium processor with MMX technology, the write buffers are written
order, even though there is no u-pipe buffer and no v-pipe buffer.

The embedded Pentium processor implements two linefill buffers, one for the data cache an
for the code cache. As information (data or code) is returned to the processor for a cache lin
is written into the linefill buffer. After the entire line has been returned to the processor it is
transferred to the cache. Note that the processor requests the needed information first and u
information as soon as it is returned. The processor does not wait for the linefill to complete b
using the requested information.

If a line fill causes a modified line in the data cache to be replaced, the replaced line remains
cache until the linefill is complete. After the linefill is complete, the line being replaced is mov
into the replacement writeback buffer and the new linefill is moved into the cache.

16.7 External Interrupt Considerations

The embedded Pentium processor recognizes the following external interrupts: BUSCHK#,
FLUSH#, SMI#, INIT, NMI, INTR and STPCLK#. These interrupts are recognized at instructi
boundaries. The instruction boundary is the first clock in the execution stage of the instructio
pipeline. This means that before an instruction is executed, the processor checks to see if a
interrupts are pending. If an interrupt is pending, the processor flushes the instruction pipelin
then services the interrupt.

The embedded Pentium processor interrupt priority scheme is shown in Table 16-8.
Embedded Pentium® Processor Family Developer’s Manual 16-207

Component Operation

 that this

ry

activity
 Pentium

perly in
istency,
.

16.8 Introduction to Dual Processor Mode

Symmetric dual processing in a system is supported with two embedded Pentium processors
sharing a single second-level cache. The processors must be of the same type, either two embedded
Pentium processors or two embedded Pentium processor with MMX technology. The two
processors appear to the system as a single processor. Multiprocessor operating systems properly
schedule computing tasks between the two processors. This scheduling of tasks is transparent to
software applications and the end-user. Logic built into the processors support a “glueless”
interface for easy system design. Through a private bus, the two processors arbitrate for the
external bus and maintain cache coherency.

In this manual, in order to distinguish between two processors in dual processing mode, one
processor is designated as the Primary processor and the other as the Dual processor. Note
is a different concept than that of “master” and “checker” processors.

The Dual processor is a configuration option of the embedded Pentium processor. The Dual
processor must operate at the same bus and core frequency and bus/core ratio as the Prima
processor.

The Primary and Dual processors include logic to maintain cache consistency between the
processors and to arbitrate for the common bus. The cache consistency and bus arbitration
causes the dual processor pair to issue extra bus cycles that does not appear in a embedded
processor uniprocessor system.

Chapter 17, “Microprocessor Initialization and Configuration,” describes in detail how the DP
bootup, cache consistency, and bus arbitration mechanisms operate. In order to operate pro
dual processing mode, the Primary and Dual processors require a private APIC, cache cons
and bus arbitration interfaces, as well as a multiprocessing-ready operating system.

Table 16-8. Embedded Pentium® Processor Interrupt Priority Scheme

Priority
Level ITR = 0 (default) ITR = 1

1 Breakpoint (INT 3) Breakpoint (INT 3)

2 BUSCHK# BUSCHK#

3 Debug Traps (INT 1) FLUSH#

4 R/S# SMI#

5 FLUSH# Debug Traps (INT 1)

6 SMI# R/S#

7 INIT INIT

8 NMI NMI

9 INTR INTR

10 Floating-Point Error Floating-Point Error

11 STPCLK# STPCLK#

12 Faults on Next Instruction Faults on Next Instruction

NOTE: ITR is bit 9 of the TR12 register.
16-208 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

g
l

s. The
 look

aster
dded
ext. If
to the

ss. The
ed

a

The dual processor interface allows the Dual processor to be added for a substantial increase in
system performance. The interface allows the Primary and Dual processor to operate in a coherent
manner that is transparent to the system.

The memory subsystem transparency was the primary goal of the cache coherency and bus
arbitration mechanisms.

16.8.1 Dual Processing Terminology

This section defines some terms used in the following discussions.

16.8.2 Dual Processing Overview

The Primary and Dual processor both have logic built-in to support “glueless” dual-processin
behind a shared L2 cache. Through a set of private handshake signals, the Primary and Dua
processors arbitrate for the external bus and maintain cache coherency between themselve
bus arbitration and cache coherency mechanisms allow the Primary and Dual processors to
like a single embedded Pentium processor to the external bus.

The Primary and Dual processors implement a fair arbitration scheme. If the Least Recent M
(LRM) requests the bus from the Most Recent Master (MRM), the bus is granted. The embe
Pentium processor arbitration scheme provides no penalty to switch from one master to the n
pipelining is used, the two processors pipeline into and out of each other’s cycles according
embedded Pentium processor specification.

Cache coherency is maintained between the two processors by snooping on every bus acce
LRM must snoop with every ADS# assertion of the MRM. Internal cache states are maintain
accordingly. If an access hits a modified line, a writeback is scheduled as the next cycle, in
accordance with the embedded Pentium processor specification.

Using the Dual processor may require special design considerations. Refer to Chapter 18,
“Hardware Interface” for more details.

Symmetric Multi-Processing: Two or more processors operating with equal priorities in
system. No individual processor is a master, and none is a
slave.

DP or Dual Processing: The Primary and Dual processor operating symmetrically
in a system sharing a second-level cache.

MRM or Most Recent Master: The processor (either the Primary or Dual) that currently
owns the processor address bus. When interprocessor
pipelining, this is the processor which last issued an
ADS#.

LRM or Least Recent Master: The processor (either the Primary or Dual) that does not
own the address bus. The LRM automatically snoops
every ADS# from the MRM processor in order to maintain
level-one cache coherency.

Primary Processor: The embedded Pentium processor when CPUTYP = VSS
(or left floating).

Dual Processor: The embedded Pentium processor when CPUTYP = VCC.
Embedded Pentium® Processor Family Developer’s Manual 16-209

Component Operation

 cache

 set
rupts

l APIC
ethod

re high
or is

y
bedded
ore

he

 The
16.8.2.1 Conceptual Overview

Figure 16-11 is a block diagram of a two processor system.

The dual processor pair appears to the system bus as a single, unified processor. The operation is
identical to a uni-processor embedded Pentium processor, except as noted in “Summary of Dual
Processing Bus Cycles” on page 19-363. The interface shields the system designer from the
consistency and arbitration mechanisms that are necessary for dual processor operation.

Both the Primary and Dual processors contain local APIC modules. The system designer is
recommended to supply an I/O APIC or other multiprocessing interrupt controller in the chip
that interfaces to the local APIC blocks over a three-wire bus. The APIC allows directed inter
as well as inter-processor interrupts.

The Primary and Dual processors, when operating in dual processing mode, require the loca
modules to be hardware enabled in order to complete the bootup handshake protocol. This m
is used to “wake up” the Dual processor at an address other than the normal Intel architectu
memory execution address. On bootup, if the Primary processor detects that a Dual process
present, the dual processor cache consistency and arbitration mechanisms are automaticall
enabled. The bootup handshake process is supported in a protocol that is included in the em
Pentium processor. See Chapter 17, “Microprocessor Initialization and Configuration,” for m
details on the APIC.

16.8.2.2 Arbitration Overview

In the dual processor configuration, a single-system bus provides the processors access to t
external system. This bus is a single, shared resource.

The dual processor pair must arbitrate for use of the system bus as requests are generated.
processors implement a fair arbitration mechanism.

Figure 16-11. Dual Processors

A6114-01

Primary
Processor

Dual
Processor

Private
Interface

Processor Bus Interface
16-210 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
When the LRM processor needs to run a cycle on the bus it submits a request for bus ownership to
the MRM. The MRM processor grants the LRM processor bus ownership as soon as all
outstanding bus requests have finished on the processor bus. The LRM processor assumes the
MRM state, and the processor that was just the MRM, becomes the LRM. Figure 16-12 further
illustrates this point:

Diagram (a) of Figure 16-12 shows a configuration where the Primary processor is in the MRM
state and the Dual processor is in the LRM state. The Primary processor is running a cycle on the
system bus when it receives a bus request from the Dual processor. In diagram (b) of Figure 16-12
the MRM (still the Primary processor) has received an indication that the bus request has finished.
The bus ownership has transferred in diagram (c) of Figure 16-12, where the Dual processor is now
the MRM. At this point, the Dual processor starts a bus transaction and continues to own the bus
until the LRM requests the bus.

16.8.2.3 Cache Coherency Overview

The Primary and Dual processors both contain separate code and data caches. The data cache uses
the MESI protocol to enforce cache consistency. A line in the data cache can be in the Modified,
Exclusive, Shared or Invalid state, whereas a line in the instruction cache can be either in the valid
or invalid state.

A situation can arise where the Primary and Dual processors are operating in dual processor mode
with shared code or data. The first-level caches attempt to cache this code and data whenever
possible (as indicated by the page cacheability bits and the cacheability pins). The private cache
coherency mechanism guarantees data consistency across the processors. If any data is cached in
one of the processors, and the other processor attempts to access the data, the processor containing

Figure 16-12. Dual Processor Arbitration Mechanism

A6115-01

Primary
Processor

Dual
Processor

Bus Request

MRM LRM

Primary
Processor

Dual
Processor

Bus Grant

New Cycle Starts

Cycle Completion
Indication

Bus Cycle
Active

LRM MRM

Primary
Processor

Dual
Processor

Bus Request

MRM LRM

[a] [b]

[c]
Embedded Pentium® Processor Family Developer’s Manual 16-211

Component Operation
the data notifies the requesting processor that it has cached the data. The state of the cache line in
the processor containing the data changes depending on the current state and the type of request the
other processor has made.

In some cases, the data returned by the system is ignored. This constraint is placed on the dual
processor cache consistency mechanism so that the dual processor pair looks like a single
processor to the system bus. However, in general, bus accesses are minimized to efficiently use the
available bus bandwidth.

The basic coherency mechanism requires the processor that is in the LRM state to snoop all MRM
bus activity. The MRM processor running a bus cycle watches the LRM processor for an indication
that the data is contained in the LRM cache. The following diagrams illustrate the basic coherency
mechanism. These figures show an example in which the Primary processor (the MRM) is
performing a cache line fill of data. The data requested by the Primary processor is cached by the
Dual processor (the LRM), and is in the modified state.

In diagram (a) of Figure 16-13, the Primary processor has already negotiated with the Dual
processor for use of the system bus and has started a cycle. As the Primary processor starts running
the cycle on the system bus, the Dual processor snoops the transaction. The key for the start of the
snoop sequence for the LRM processor is an assertion of ADS# by the MRM processor.

Diagram (b) of Figure 16-13 shows the Dual processor indicating to the Primary processor that the
requested data is cached and modified in the Dual processor cache. The snoop notification
mechanism uses a dedicated, two-signal interface that is private to the dual processor pair. At the
same time that the Dual processor indicates that the transaction is contained as Modified in the its
cache, the Dual processor requests the bus from the Primary processor (still the MRM). The MRM
processor continues with the transaction that is outstanding on the bus, but ignores the data
returned by the system bus.

After the Dual processor notifies the Primary processor that the requested data is modified in the
Dual processor cache, the Dual processor waits for the bus transaction to complete. At this point,
the LRM/MRM state will toggle, with the Primary processor becoming the LRM processor and the
Dual processor becoming the MRM processor. This sequence of events is shown in diagram (c) of
Figure 16-13.

Diagram (c) of Figure 16-13 also shows the Dual processor writing the data back on the system
bus. The write back cycle looks like a normal cache line replacement to the system bus. The final
state of the line in the Dual processor is determined by the value of the W/R# pin as sampled during
the ADS# assertion by the Primary processor.

Finally, diagram (d) of Figure 16-13 shows the Primary processor re-running the bus transaction
that started the entire sequence. The requested data is returned by the system as a normal line fill
request without intervention from the LRM processor.
16-212 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
16.9 APIC Interrupt Controller

The embedded Pentium processor contains implementations of the Advanced Programmable
Interrupt Controller architecture. These implementations are capable of supporting a
multiprocessing interrupt scheme with an external APIC-compatible controller.

The Advanced Programmable Interrupt Controller (APIC) is an on-chip interrupt controller that
supports multiprocessing. In a uniprocessor system, the APIC may be used as the sole system
interrupt controller, or may be disabled and bypassed completely.

In a multiprocessor system, the APIC operates with an additional and external I/O APIC system
interrupt controller. The dual-processor configuration requires that the APIC be hardware enabled.
The APICs of the Primary and Dual processors are used in the bootup procedure to communicate
start-up information.

Note: The APIC is not hardware compatible with the 82489DX.

On the embedded Pentium processor, the APIC uses 3 pins: PICCLK, PICD0, and PICD1.
PICCLK is the APIC bus clock while PICD0-PICD1 form the two-wire communication bus.

To use the 8259A interrupt controller, or to completely bypass it, the APIC may be disabled using
the APICEN pin. You must use the local APICs when using the dual-processor component.

Figure 16-13. Dual Processor L1 Cache Consistency

A6116-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

New Cycle
Starts

Automatic
Snoop

Modified Data
Written Back

Primary
Processor

Dual
Processor

Bus Request

Snoop Hit
Indication

MRM LRM

[a]
Processor Bus

Primary
Processor

Dual
ProcessorBus Request

Bus Grant
LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Cycle
Restarted

Primary
Processor

Dual
Processor

Bus Grant

MRM LRM

Processor Bus

PA PB

[d]
Embedded Pentium® Processor Family Developer’s Manual 16-213

Component Operation
The main features of the APIC architecture include:

• Multiprocessor interrupt management (static and dynamic symmetric interrupt distribution
across all processors)

• Dynamic interrupt distribution that includes routing interrupts to the lowest-priority processor

• Inter-processor interrupt support

• Edge or level triggered interrupt programmability

• Various naming/addressing schemes

• System-wide processor control functions related to NMI, INIT, and SMI (see Chapter 24 for
APIC handling of SMI)

• 8259A compatibility by becoming virtually transparent with regard to an externally connected
8259A style controller, making the 8259A visible to software

• A 32-bit wide counter used as a timer to generate time slice interrupts local to that processor.

The AC timings of the embedded Pentium processor APIC are described in Chapter 7. Note that
although there are minor software differences from the 82489DX, programming to the integrated
APIC model ensures compatibility with the external 82489DX. For additional APIC programming
information, refer to the MultiProcessor Specification (order number 242016).

In a dual-processor configuration, the local APIC may be used with an additional device similar to
the I/O APIC. The I/O APIC is a device that captures all system interrupts and directs them to the
appropriate processors via various programmable distribution schemes. An external device
provides the APIC system clock. Interrupts that are local to each processor go through the APIC on
each chip. A system example is shown in Figure 16-14.

Figure 16-14. APIC System Configuration

A6117-01

Primary
Processor

Dual
Processor

Local
APIC

CLK
Generator

8259A

I/O APIC

Local
APIC

Local
Interrupts

System I/O
Interrupts

16

PICD1
PICD0
PICCLK

LINT0
LINT1

LINT0
LINT1

Local
Interrupts

3.3V
16-214 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

nd
dded

are

rate a

h no
The APIC devices in the Primary and Dual processors may receive interrupts from the I/O APIC
via the three-wire APIC bus, locally via the local interrupt pins (LINT0, LINT1), or from the other
processor via the APIC bus. The local interrupt pins, LINT0 and LINT1, are shared with the INTR
and NMI pins, respectively. When the APIC is bypassed (hardware disabled) or programmed in
“through local” mode, the 8259A interrupt (INTR) and NMI are connected to the INTR/LINT0 a
NMI/LINT1 pins of the processor. Figure 16-15 shows the APIC implementation in the embe
Pentium processor. Note that the PICCLK has a maximum frequency of 16.67 MHz.

When the local APIC is hardware enabled, data memory accesses to its 4 Kbyte address space
executed internally and do not generate an ADS# on the processor bus. However, a code memory
access in the 4 KByte APIC address space will not be recognized by the APIC and will gene
cycle on the processor bus.

Note: Internally executed data memory accesses may cause the address bus to toggle even thoug
ADS# is issued on the processor bus.

16.9.1 APIC Configuration Modes

There are four possible APIC Modes:

• Normal mode

• Bypass mode (hardware disable)

• Through local mode

• Masked mode (software disable)

16.9.1.1 Normal Mode

This is the normal operating mode of the local APIC. When in this mode, the local APIC is both
hardware and software enabled.

Figure 16-15. Local APIC Interface

A6118-01

Local APIC
Module

Pentium® Processor
Interrupt Logic

Pentium® Processor

APIC EnablePICD1
PICD0

PICCLK

LINT1 / NMI
LINT0 / INTR

INIT
SMI#
Embedded Pentium® Processor Family Developer’s Manual 16-215

Component Operation

IC is

e, the

order
”
y

tware
tup

16.9.1.2 Bypass Mode

Bypass mode effectively removes (bypasses) the APIC from the embedded Pentium processor,
causing it to operate as if there were no APIC present. Any accesses to the APIC address space go
to memory. APICEN is sampled at the falling edge of RESET, and later becomes the PICD1 (part
of the APIC 3-wire bus) signal. Bypass mode is entered by driving APICEN low at the falling edge
of RESET. Since the APIC must be used to enable the Dual processor after RESET, PICD1 must be
driven high at reset to ensure that APIC is hardware enabled if a second processor is present.

For hardware disabling operations, the following implications must be considered:

• The INTR and NMI pins become functionally equivalent to the corresponding interrupt pins in
the embedded Pentium processor, and the APIC is bypassed.

• The APIC PICCLK must be tied high.

• The system will not operate with the Dual Processor if the local APIC is hardware disabled.

16.9.1.3 Through Local Mode

Configuring in Through Local Mode allows the APICs to be used for the dual-processor bootup
handshake protocol and then pass interrupts through the local APIC to the core to support an
external interrupt controller.

To use the Through Local Mode of the local APIC, the APIC must be enabled in both hardware and
software. This is done by programming two local vector table entries, LVT1 and LVT2, at
addresses 0FEE00350H and 0FEE00360H, as external interrupts (ExtInt) and NMI, respectively.
The 8259A responds to the INTA cycles and returns the interrupt vector to the processor.

The local APIC should not be sent any interrupts prior to it’s being programmed. Once the AP
programmed it can receive interrupts.

Note that although external interrupts and NMI are passed through the local APIC to the cor
APIC can still receive messages on the APIC bus.

16.9.1.4 Masked Mode

The local APIC is initialized to masked mode once hardware enabled via the APICEN pin. In
to be programmed in normal or Through Local Modes, the APIC must be “software enabled.
Once operating in normal or Through Local Modes, the APIC may be disabled by software b
clearing bit 8 of the APIC’s spurious vector interrupt register (Note: this register is normally
cleared at RESET and INIT). This register is at address 0FEE000F0H. Disabling APIC in sof
returns it to Masked mode. With the exception of NMI, SMI, INIT, remote reads, and the star
IPI, all interrupts are masked on the APIC bus. The local APIC does not accept interrupts on
LINT0 or LINT1.

16.9.1.5 Software Disabling Implications

For the software disabling operations, the following implications must be considered:

• The 4-Kbyte address space for the APIC is always blocked for data accesses (i.e., external
memory in this region must not be accessed).

• The interrupt control register (ICR) can be read and written (e.g., interprocessor interrupts are
sent by writing to this register).
16-216 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

.

 the
110”

ocessor
Thus,

these

ET.

o a
 the
t been
• The APIC can continue to receive SMI, NMI, INIT, “startup,” and remote read messages

• Local interrupts are masked.

• Software can enable/disable the APIC at any time. After software disabling the local APICs,
pending interrupts must be handled or masked by software.

• The APIC PICCLK must be driven at all times.

16.9.1.6 Dual Processing with the Local APIC

The Dual processor bootup protocol may be used in the normal, through local, or masked modes.

16.9.2 Loading the APIC ID

Loading the APIC ID may be done with external logic that would drive the proper address at reset.
If the BE3#–BE0# signals are not driven and do not have external resistors to VCC or VSS, the
APIC ID value defaults to 0000 for the Primary processor and 0001 for the Dual processor.

Warning: An APIC ID of all 1s is an APIC special case (i.e., a broadcast) and must not be used. Since
Dual processor inverts the lowest order bit of the APIC ID placed on the BE pins, the value “1
should also be avoided when operating in Dual Processing mode.

In a dual processor configuration, the OEM and Socket 5 should have the four BE pairs tied
together. The OEM processor loads the value seen on these four pins at RESET. The dual pr
loads the value seen on these pins and automatically inverts bit 24 of the APIC ID Register.
the two processors have unique APIC ID values.

In a general multi-processing system consisting of multiple embedded Pentium processors,
pins must not be tied together, so each local APIC can have unique ID values.

These four pins must be valid and stable two clocks before and after the falling edge of RES

16.9.3 Response to HOLD

While the embedded Pentium processor is accessing the APIC, the processor will respond t
HOLD request with a maximum delay of six clocks. To external agents that are not aware of
APIC bus, this looks like the processor is not responding to HOLD even though ADS# has no
driven and the processor bus seems idle.

Table 16-9. APIC ID

APIC ID Register Bit Pin Latched at RESET

bit 24 BE0#

bit 25 BE1#

bit 26 BE2#

bit 27 BE3#
Embedded Pentium® Processor Family Developer’s Manual 16-217

Component Operation

2–BF0
put

e.
3 ratio

-core
ot be
 edge

nd a
m
g

ns.
16.10 Fractional Speed Bus

The embedded Pentium processor is offered in various bus-to-core frequency ratios. The BF
configuration pins determine the bus-to-core frequency ratio. The processor multiplies the in
CLK by the bus-to-core ratio to achieve higher internal core frequencies.

Note: Only the Low-power Embedded Pentium Processor with MMX technology has a BF2 pin.

The external bus frequency is set on power-up RESET through the CLK pin. The processor
samples the BFn pins on the falling edge of RESET to determine which bus-to-core ratio to us
When the BFn pins are left unconnected, the embedded Pentium processor defaults to the 2/
and the embedded Pentium processor with MMX technology defaults to the 1/2 ratio. BFn settings
must not change its value while RESET is active. Changing the external bus speed or bus-to
ratio requires a “power-on” RESET pulse initialization. Once a frequency is selected, it may n
changed with a warm-reset (15 clocks). The BF pin must meet a 1 ms setup time to the falling
of RESET.

Each embedded Pentium processor is specified to operate within a single bus-to-core ratio a
specific minimum to maximum bus frequency range (corresponding to a minimum to maximu
core frequency range). Operation in other bus-to-core ratios or outside the specified operatin
frequency range is not supported. Tables 16-10 through 16-12 summarize these specificatio

.

Table 16-10. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor (at 100/133/166 MHz)

BF1 BF0
Embedded Pentium®
Processor Bus/Core

Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 2/5 66/166 33/83

1 0 1/2 66/133 33/66

1 1 2/31 66/100 33/50

NOTES:
1. This is the default bus fraction for the embedded Pentium processor (at 100/133/166 MHz). If the BF pins

are left floating, the processor will be configured for the 2/3 bus to core frequency ratio.
2. All other BF1–BF0 settings are Reserved for the embedded Pentium processor (at 100/133/166 MHz).

Table 16-11. Bus-to-Core Frequency Ratios for the Embedded Pentium®
Processor with MMX™ Technology

BF1 BF0 Embedded Pentium Processor with
MMX™ Technology Bus/Core Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

1 1 2/7 66/233 33/117

0 1 1/3 66/200 33/100

1 0 1/2† N/A N/A

† This is the default bus-to-core ratio for the Pentium processor with MMX technology. If the BF pins are left
floating, the processor will be configured for the 1/2 bus-to-core frequency ratio, which is unsupported. Do
not float the BF pins at RESET.
16-218 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
16.10.1 Fractional Bus Operation Examples

The following examples illustrate the embedded Pentium processor synchronization mechanism.

Table 16-12. Bus-to-Core Frequency Ratios for the Low-Power Embedded
Pentium® Processor with MMX™ Technology

BF2 BF1 BF0
Low-Power Embedded Pentium

Processor with MMX™ Technology
Bus/Core Ratio 4

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 0 0 2/5 66/166

1 0 0 1/4 66/266

Figure 16-16. Processor 1/2 Bus Internal/External Data Movement

A6122-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

B

A

A A

B

Embedded Pentium® Processor Family Developer’s Manual 16-219

Component Operation
Figure 16-18 shows how the embedded Pentium processor prevents data from changing in clock 2,
where the 2/3 external clock rising edge occurs in the middle of the internal clock phase, so it can
be properly synchronized and driven.

Figure 16-17. Processor 2/3 Bus Internal/External Data Movement

A6123-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

A B

B

A

BA

1 2 3 4 5

B

Figure 16-18. Processor 2/5 Bus Internal/External Data Movement

A6119-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

A

C D

B

A B

1 2 3 4 5 6

C D
16-220 Embedded Pentium® Processor Family Developer’s Manual

Component Operation

 as a

hile
t allows

uction.

oHalt.
16.11 Power Management

16.11.1 I/O Instruction Restart

I/O Instruction restart is a power management feature of the embedded Pentium processor that
allows the processor to re-execute an I/O instruction. In this way, an I/O instruction can alert a
sleeping device in a system and SMI# can be recognized before the I/O instruction is re-executed.
SMI# assertion causes a wake-up routine to be executed, so the restarted I/O instruction can be
executed by the system.

16.11.2 Stop Clock and Auto Halt Powerdown

The embedded Pentium processor uses Stop Clock and Auto Halt Powerdown to immediately
reduce the power of each device. These features cause the clock to be stopped to most of the
processor’s internal units and thus significantly reduce power consumption by the processor
whole.

Stop clock is enabled by asserting the STPCLK# pin of the embedded Pentium processor. W
asserted, the embedded Pentium processor stops execution and does service interrupts, bu
external and interprocessor (Primary and Dual processor) snooping.

AutoHalt Powerdown is entered once the embedded Pentium processor executes a HLT instr
In this state, most internal units are powered-down, but the embedded Pentium processor
recognizes all interrupts and snoops.

Embedded Pentium processor pin functions (D/P#, etc.) are not affected by STPCLK# or Aut

For additional details on power management, refer to Chapter 24, “Power Management.”

Figure 16-19. Processor 1/3 Bus Internal/External Data Movement

A6125-01

Int CLK

Ext CLK

Int Data

Int Data

Ext Data

Ext Data

Output

Input

B

A

A A

B

Embedded Pentium® Processor Family Developer’s Manual 16-221

Component Operation

t

or

e flag
16.12 CPUID Instruction

The CPUID instruction provides information to software about the vendor, family, model and
stepping of the microprocessor on which it is executing. In addition, it indicates the features
supported by the processor.

When executing CPUID:

• If the value in EAX is “0,” then the 12-byte ASCII string “GenuineIntel” (little endian) is
returned in EBX, EDX, and ECX. Also, EAX contains a value of “1” to indicate the larges
value of EAX which should be used when executing CPUID.

• If the value in EAX is “1,” then the processor version is returned in EAX and the process
capabilities (feature flags) are returned in EDX.

• If the value in EAX is neither “0” nor “1”, the embedded Pentium processor writes “0” to
EAX, EBX, ECX, and EDX.

The following EAX value is defined for the CPUID instruction executed with EAX = 1. The
processor version EAX bit assignments are given in Figure 16-20. Table 16-13 lists the featur
bits assignment definitions.

Figure 16-20. EAX Bit Assignments for CPUID

A6126-01

0 (Reserved)EAX

31 1314

Type

1112 78 3 04

Family Model Stepping
16-222 Embedded Pentium® Processor Family Developer’s Manual

Component Operation
The family field for the embedded Pentium processor family is 0101B (5H). The model value for
the embedded Pentium processor is 0010B (2H) or 0111B (7H), and the model value for the
embedded Pentium processor with MMX technology is 0100B (4H). The model value for the low-
power embedded Pentium processor with MMX technology is 1000B (8H)

Table 16-13. EDX Bit Assignment Definitions (Feature Flags)

Bit Name Value Description When Flag=1 Comments

0 FPU 1 Floating-point unit on-chip
The processor contains an FPU that
supports the Intel 387 floating-point
instruction set.

1 VME 1 Virtual Mode Enhancements The processor supports extensions to
virtual-8086 mode.

2 DE 1 Debugging Extension

The processor supports I/O breakpoints,
including the CR4.DE bit for enabling
debug extensions and optional trapping of
access to the DR4 and DR5 registers.

3 PSE 1 Page Size Extension The processor supports 4-Mbyte pages.

4 TSC 1 Time Stamp Counter
The RDTSC instruction is supported
including the CR4.TSD bit for
access/privilege control.

5 MSR 1 Embedded Pentium® Processor
MSR

Model SpecificRegisters are implemented
with the RDMSR, WRMSR instructions.

6 PAE 0 Physical Address Extension Physical addresses greater than 32 bits
are supported.

7 MCE 1 Machine Check Exception
Machine Check Exception, Exception 18,
and the CR4.MCE enable bit are
supported.

8 CX8 1 CMPXCHG8B Instruction
Supported

The compare and exchange 8 bytes
instruction is supported.

9 APIC 1 On-chip PIC Hardware
Enabled† The processor contains a local APIC.

10-11 R Reserved Do not rely on its value.

12 MTRR 0 Memory Type Range Registers
The processor supports the Memory Type
Range Registers specifically the
MTRR_CAP register.

13 PGE 0 Page Global Enable The global bit in the PDE’s and PTE’s and
the CR4.PGE enable bit are supported.

14 MCA 0 Machine Check Architecture
The Machine Check Architecture is
supported, specifically the MCG_CAP
register.

15-22 R Reserved Do not rely on its value.

23 MMX
technology 1 Intel Architecture MMX™

technology supported

The processor supports the MMX
technology instruction set extensions to
the Intel Architecture.

24-31 R Reserved Do not rely on its value.

† Indicates that the APIC is present and hardware is enabled (software disabling does not affect this bit).
Embedded Pentium® Processor Family Developer’s Manual 16-223

Component Operation
Note: Use the MMX technology feature bit (bit23) in the EFLAGS register, not the model value, to detect
the presence of the MMX technology feature set.

For specific information on the stepping field, consult the embedded Pentium processor family
Specification Update. The type field is defined in Table 16-14.

16.13 Model Specific Registers

Each embedded Pentium processor contains certain Model Specific Registers that are used in
execution tracing, performance monitoring, testing, and machine check errors. They are unique to
that embedded Pentium processor and may not be implemented in the same way in future
processors.

Two instructions, RDMSR and WRMSR (read/write model specific registers) are used to access
these registers. When these instructions are executed, the value in ECX specifies which model
specific register is being accessed.

Software must not depend on the value of reserved bits in the model specific registers. Any writes
to the model specific registers should write “0” into any reserved bits.

For more information, refer to Chapter 26, “Model Specific Registers and Functions.”

Table 16-14. EAX Type Field Values

Bit 13 Bit 12 Processor Type

0 0
Embedded Pentium® processor, embedded Pentium
processor with MMX™ technology or low-power embedded
Pentium processor with MMX technology

0 1 Reserved

1 0 Dual embedded Pentium processor

1 1 Reserved
16-224 Embedded Pentium® Processor Family Developer’s Manual

	Component Operation 16
	16.1 Pipeline and Instruction Flow
	Figure 16�1. Embedded Pentium® Processor Pipeline Execution
	16.1.1 Integer Pipeline Description
	16.1.1.1 Instruction Prefetch

	16.1.2 Integer Instruction Pairing Rules

	16.2 Branch Prediction
	Figure 16�2. Branch Prediction Example

	16.3 Floating-Point Unit
	16.3.1 Floating-Point Pipeline Stages
	16.3.2 Instruction Issue
	16.3.3 Safe Instruction Recognition
	16.3.4 FPU Bypasses
	16.3.5 Branching Upon Numeric Condition Codes

	16.4 Intel MMX™ Technology Unit
	16.4.1 MMX™ Technology Programming Environment
	16.4.1.1 MMX™ Technology Registers
	Figure 16�3. MMX™ Technology Register Set

	16.4.1.2 MMX™ Technology Data Types
	Figure 16�4. Packed Data Types

	16.4.1.3 Single Instruction, Multiple Data (SIMD) Execution Model
	16.4.1.4 Memory Data Formats
	Figure 16�5. Eight Packed Bytes in Memory (at Address 1000H)

	16.4.1.5 MMX™ Technology Register Data Formats

	16.4.2 MMX™ Instruction Set
	16.4.3 Intel MMX™ Technology Pipeline Stages
	Figure 16�6. MMX™ Technology Pipeline Structure
	Table 16�1. Pipeline Stage Summary

	16.4.4 Instruction Issue
	16.4.4.1 Pairing Two MMX™ Instructions
	16.4.4.2 Pairing an Integer Instruction in the U-pipe with an MMX Instruction in the V-pipe
	16.4.4.3 Pairing an MMX Instruction in the U-pipe with an Integer Instruction in the V-pipe

	16.5 On-Chip Caches
	16.5.1 Cache Organization
	Figure 16�7. Pseudo-LRU Cache Replacement Strategy
	Figure 16�8. Conceptual Organization of Code and Data Caches

	16.5.2 Cache Structure
	16.5.3 Cache Operating Modes
	Table 16�2. Cache Operating Modes �

	16.5.4 Page Cacheability
	16.5.4.1 PCD and PWT Generation
	Table 16�3. 32-Bits/4-Kbyte Pages
	Table 16�4. 32-Bits/4-Mbyte Pages
	Figure 16�9. PCD and PWT Generation

	16.5.5 Inquire Cycles
	16.5.6 Cache Flushing
	16.5.7 Data Cache Consistency Protocol (MESI Protocol)
	16.5.7.1 State Transition Tables
	Table 16�5. Data Cache State Transitions for UNLOCKED Processor Initiated Read Cycles†
	Table 16�6. Data Cache State Transitions for Processor Initiated Write Cycles
	Table 16�7. Cache State Transitions During Inquiry Cycles

	16.5.7.5 Code Cache Consistency Protocol

	16.6 Write Buffers and Memory Ordering
	Figure 16�10. Embedded Pentium® Processor Write Buffer Implementation
	16.6.1 External Event Synchronization
	16.6.2 Serializing Operations
	16.6.3 Linefill and Writeback Buffers

	16.7 External Interrupt Considerations
	Table 16�8. Embedded Pentium® Processor Interrupt Priority Scheme

	16.8 Introduction to Dual Processor Mode
	16.8.1 Dual Processing Terminology
	16.8.2 Dual Processing Overview
	16.8.2.1 Conceptual Overview
	Figure 16�11. Dual Processors

	16.8.2.2 Arbitration Overview
	Figure 16�12. Dual Processor Arbitration Mechanism

	16.8.2.3 Cache Coherency Overview
	Figure 16�13. Dual Processor L1 Cache Consistency

	16.9 APIC Interrupt Controller
	Figure 16�14. APIC System Configuration
	Figure 16�15. Local APIC Interface
	16.9.1 APIC Configuration Modes
	16.9.1.1 Normal Mode
	16.9.1.2 Bypass Mode
	16.9.1.3 Through Local Mode
	16.9.1.4 Masked Mode
	16.9.1.6 Dual Processing with the Local APIC

	16.9.2 Loading the APIC ID
	Table 16�9. APIC ID

	16.9.3 Response to HOLD

	16.10 Fractional Speed Bus
	Table 16�10. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor (at 100/133/166 MHz)
	Table 16�11. Bus-to-Core Frequency Ratios for the Embedded Pentium® Processor with MMX™ Technology
	Table 16�12. Bus-to-Core Frequency Ratios for the Low-Power Embedded Pentium® Processor with MMX™...
	16.10.1 Fractional Bus Operation Examples
	Figure 16�16. Processor 1/2 Bus Internal/External Data Movement
	Figure 16�17. Processor 2/3 Bus Internal/External Data Movement
	Figure 16�18. Processor 2/5 Bus Internal/External Data Movement
	Figure 16�19. Processor 1/3 Bus Internal/External Data Movement

	16.11 Power Management
	16.11.1 I/O Instruction Restart
	16.11.2 Stop Clock and Auto Halt Powerdown

	16.12 CPUID Instruction
	Figure 16�20. EAX Bit Assignments for CPUID
	Table 16�13. EDX Bit Assignment Definitions (Feature Flags)�
	Table 16�14. EAX Type Field Values

	16.13 Model Specific Registers

